
Summary:

libcidr is a library to make it easier to handle IP addresses and blocks, and
manipulate them in various ways.
The core of the library is a pair of functions that take a human readable string and
turn it into our internal representation of a CIDR address block
(cidr_from_str()), and one to take that internal representation and turn it into a
human-readable string (cidr_to_str()). There are a large number of options for
how to format that string, as well.
Additionally, there are functions to compare different CIDR blocks, to determine
if they’re equal, or if one is contained within the other. This functionality can be
useful for writing access-control code, or client-dependant configuration, or
similar things. There are functions to manipulate address blocks and determine
attributes of them, like network/broadcast addresses, the range of host addresses,
the number of available host addresses, etc. There are functions to split a CIDR
block into the two smaller blocks it contains, or to derive the parent block that it
is itself contained within. And there are functions to translate to and from
in_addr-type structures, which the operating system commonly uses to represent
addresses for handle socket connections and so forth.
In short, just about anything you might do in a program with IP addressing,
whether referring to individual hosts, or to any sized subnets, libcidr is designed
to simplify handling. It’s not a DNS library, nor is it a socket abstraction layer.
It’s just a set of functions for manipulating raw IP addresses in various ways.
The functions generally follow standard C conventions. They tend to return 0 or a
pointer when acting properly, and -1 or NULL when something went wrong
(unless the function usage suggests other returns, of course, as in
cidr_get_pflen()). They set errno when returning an error; the error codes each
function can return are documented with the function.
libcidr doesn’t use any threading itself. It should, however, be safe to use in any
threaded program if used sensibly. Only a very few functions use static strings,
and those that do (cidr_version() and cidr_numaddr() and its related functions
being the only ones I can think of) tend to be constant strings as well, so they
wouldn’t be changing. Of course, you don’t want to cidr_free() a CIDR in one
thread while you’re still using it in another, but if you do, it’s not libcidr’s fault.
For the current version or any extra information, see the libcidr project
homepage, at <http://www.over-yonder.net/~fullermd/projects/libcidr>.
This reference manual is build using the codelibrary SGML DTD, which is
specifically designed for documenting libraries. See the codelibrary homepage at
<http://www.over-yonder.net/~fullermd/projects/sgml/codelibrary> for more
details on it.

Contents
Data structures:
CIDR (Internal)

Functions:
cidr_addr_broadcast()
cidr_addr_hostmax()
cidr_addr_hostmin()
cidr_addr_network()
cidr_alloc()
cidr_contains()
cidr_dup()
cidr_equals()
cidr_free()
cidr_from_inaddr()
cidr_from_in6addr()
cidr_from_str()
cidr_get_addr()
cidr_get_mask()
cidr_get_pflen()
cidr_get_proto()
cidr_is_v4mapped()
cidr_net_subnets()
cidr_net_supernet()
cidr_numaddr()
cidr_numaddr_pflen()
cidr_numhost()
cidr_numhost_pflen()
cidr_to_inaddr()
cidr_to_in6addr()
cidr_to_str()
cidr_version()

Data structures:
- CIDR: A single CIDR-format IP block

*** This datatype is for internal use only ***
Note:

Use the cidr_free() function to free the memory associated with this
datatype, and the cidr_alloc() function to allocate and initialize the
structure.

Members:

- int version: The structure version. This is reserved for future use, and put
in to hold its place at the start of the array.

- uint8_t addr[16]: The 16 octets that make up an IP address. For v6
addresses, all are used. For v4 addresses, only the last 4 are really used. The
prior 2 octets are filled in with all-ones, so that the internal representation
matches the v4-compat IPv6 addressing block. This is useful when, for
instance, using cidr_to_in6addr(), in that it gives you the expected result.

- uint8_t mask[16]: The 16 octets that make up an IP netmask. For v4
addresses, only the last 4 are really used; the rest are intialized to
all-bits-one however, which is correct in spirit.

- int proto: The protocol the address described is. Currently possible values
are CIDR_IPV4 and CIDR_IPV6. I think that’s pretty self-explanatory.

Functions:
- cidr_addr_broadcast(): Find the broadcast address

Summary:
Generate a CIDR structure describing the broadcast address of the
passed-in netblock.
Note that using this with an IPv6 netblock is technically asking for
something that doesn’t exist, since IPv6 doesn’t have subnet broadcast
addresses. This function will still return the all-1’s address though, on the
assumption that if you’re asking the question, it’s the answer you want.
An additional somewhat specialized case is that of an IPv4 /31 or IPv6 /127.
Depending on your interpretation and usage, this is either a useless subnet
since it only contains network and broadcast and no hosts, or a subnet that
holds 2 hosts with neither network or broadcast address (commonly used
for point-to-point links). As a result, cidr_addr_broadcast() and
cidr_addr_network() will give answers as if it were a host-less subnet,
while cidr_addr_hostmax() and cidr_addr_hostmin() will answer as
though it were a 2-host subnet. It can be seen as a little strange for
cidr_addr_broadcast() and cidr_addr_hostmax() to give the same
answer, but as above, libcidr assumes that if you ask the question, you want
the answer that makes sense in that context.
Similar caveats apply to calling these on a v4 /32 or v6 /128. Ask a silly
question, get a silly answer :)
The returned structure should be cleaned up using cidr_free().

Arguments:
- const CIDR * addr: A CIDR structure describing an arbitrary netblock.

Return value:
CIDR *

Returns a pointer to a CIDR structure describing the broadcast address on
success. Returns NULL on failure.

Error codes:
- [EFAULT]

Given NULL
Note:

cidr_addr_broadcast() can also fail and set errno for any of the
reasons listed for cidr_alloc().

- cidr_addr_hostmax(): Find the highest host address

Summary:
Generate a CIDR structure describing the highest-numbered address
available for a host IP in the given netblock.
See the discussion under cidr_addr_broadcast() concerning near- amd
maximal-prefix-length blocks for edge case details.
The returned structure should be cleaned up using cidr_free().

Arguments:
- const CIDR * addr: A CIDR structure describing an arbitrary netblock.

Return value:
CIDR *

Returns a pointer to a CIDR structure describing the max host address on
success. Returns NULL on failure.

Error codes:
Note:

cidr_addr_hostmax() can fail and set errno for any of the reasons
listed for cidr_addr_broadcast().

- cidr_addr_hostmin(): Find the lowest host address

Summary:
Generate a CIDR structure describing the lowest-numbered address
available for a host IP in the given netblock.
See the discussion under cidr_addr_broadcast() concerning near- amd
maximal-prefix-length blocks for edge case details.
The returned structure should be cleaned up using cidr_free().

Arguments:
- const CIDR * addr: A CIDR structure describing an arbitrary netblock.

Return value:
CIDR *

Returns a pointer to a CIDR structure describing the min host address on
success. Returns NULL on failure.

Error codes:
Note:

cidr_addr_hostmin() can fail and set errno for any of the reasons
listed for cidr_addr_network().

- cidr_addr_network(): Find the network address

Summary:
Generate a CIDR structure describing the network address of the passed-in
netblock.
See the discussion under cidr_addr_broadcast() concerning near- amd
maximal-prefix-length blocks for edge case details.
The returned structure should be cleaned up using cidr_free().

Arguments:
- const CIDR * addr: A CIDR structure describing an arbitrary netblock.

Return value:
CIDR *

Returns a pointer to a CIDR structure describing the network address on
success. Returns NULL on failure.

Error codes:
- [EFAULT]

Given NULL
Note:

cidr_addr_network() can also fail and set errno for any of the
reasons listed for cidr_alloc().

- cidr_alloc(): Create a CIDR

Summary:
Allocate memory for a CIDR structure and initialize the necessary pieces.
The returned structure should be cleaned up using cidr_free().
Note that you should probably never need to call this function yourself;
you’ll generally get your CIDR structures as a return from a function like
cidr_from_str() or cidr_from_inaddr().

Arguments:
None.

Return value:
CIDR *

Returns a pointer to an initialized CIDR structure on success. Returns
NULL on failure.

Error codes:
- [ENOMEM]

malloc() failed

- cidr_contains(): Compare netblocks

Summary:
This function is passed two CIDR structures describing a pair of netblocks.
It then determines if the latter is wholly contained within the former.
A common use-case of this will generally involve the second "block"
actually being a host (/32 or /128) address, as when you’re implementing
ACL’s. But that’s really just a specific case of the second block being any
other size; there’s nothing special or magical about it. As far as libcidr is
concerned, they’re just two netblocks.

Arguments:
- const CIDR * big: The netblock which may (or may not) contain the
second arg.
- const CIDR * little: The netblock which may (or may not) be contained
within the first arg.

Return value:
int

Returns 0 if little is wholly contained within big. Returns -1 if it’s not, or
if an error occured.

Error codes:
- [0]

No error (little not in big)
- [EFAULT]

Passed NULL
- [EINVAL]

Invalid argument
- [ENOENT]

Internal error (shouldn’t happen)
- [EPROTO]

Protocols don’t match

- cidr_dup(): Duplicate a netblock

Summary:
Allocate a CIDR, and fill it in with a duplicate of the information given.
The returned structure should be cleaned up using cidr_free().

Arguments:
- const CIDR * src: A CIDR structure to be copied.

Return value:
CIDR *

Returns a CIDR struct containing a copy of src. Returns NULL on failure.

Error codes:
Note:

cidr_dup() can fail and set errno for any of the reasons listed for
cidr_alloc().

- cidr_equals(): Compare two blocks for equality

Summary:
This function is passed two CIDR structures describing a pair of netblocks.
It checks to see if they happen to describe the same netblock.

Arguments:
- const CIDR * one: One netblock.
- const CIDR * two: Another netblock.

Return value:
int

Returns 0 if the two CIDR structs describe the same netblock. Returns -1
otherwise.

- cidr_free(): Free a CIDR structure.

Summary:
Takes a CIDR structure and free()’s all its component parts.

Arguments:
- CIDR * tofree: A single CIDR structure which has outlived its
usefulness.

Return value:
void

- cidr_from_inaddr(): Parse a struct in_addr

Summary:
Takes a populated struct in_addr, as you’d get from accept() or
getaddrinfo() or similar functions. Parses it out and generates a CIDR
structure based on it. Note that an in_addr only contains a host address, so
the netmask is initialized to all-1’s (/32).

Arguments:
- const struct in_addr * uaddr: A populated struct in_addr, from whatever
source obtained.

Return value:
CIDR *

Returns a pointer to a populated CIDR containing the address in the
passed-in struct in_addr. The netmask is initialized to all-1’s, and the
protocol to IPv4. Use cidr_free() to free the structure when you’re
finished with it. Returns NULL on error.

Error codes:
- [EFAULT]

Passed NULL
Note:

cidr_from_inaddr() can also fail and set errno for any of the
reasons listed for cidr_alloc().

- cidr_from_in6addr(): Parse a struct in6_addr

Summary:
Takes a populated struct in6_addr, as you’d get from accept() or
getaddrinfo() or similar functions. Parses it out and generates a CIDR
structure based on it. Note that a in6_addr only contains a host address, so
the netmask is initialized to all-1’s (/128).

Arguments:
- const struct in6_addr * uaddr: A populated struct in6_addr, from whatever
source obtained.

Return value:
CIDR *

Returns a pointer to a populated CIDR containing the address in the
passed-in struct in6_addr. The netmask is initialized to all-1’s, and the
protocol to IPv6 (though it may contain an IPv4-mapped address). Use
cidr_free() to free the structure when you’re finished with it. Returns
NULL on error.

Error codes:
- [EFAULT]

Passed NULL
Note:

cidr_from_inaddr() can also fail and set errno for any of the
reasons listed for cidr_alloc().

- cidr_from_str(): Parse a human-readable string

Summary:
Takes in a netblock description as a human-readable string, and creates a
CIDR structure from it.
This is probably the most intricate function in the library. It accepts
addresses in "address/mask" format. ’address’ is an IP address in valid
written form. For IPv4, it’s 1 through 4 period-separated pieces, expressed
in octal, hex, or decimal, with the last octet being treated as an 8, 16, 24, or
32-bit quantity depending on whether there are 4, 3, 2, or 1 pieces given
(respectively). Of course, you’re nuts for using that flexibility. For IPv6, it’s
nice and simple; 8 colon-separated double-octets, excepting that the last 4
octets can be expressed as a 4-piece dotted-decimal, like an IPv4 address
(the full flexibility of the IPv4 parsing engine is not available, however;
intentionally, though that may change if necessary). ’mask’ can be either a
prefix length (/0-/32 for IPv4, /0-/128 for IPv6), or a netmask written in the
standard form for the address family.
IPv6 addresses can be specified in fully expanded form, or with ::-style
contraction. IPv4-mapped IPv6 addresses (::ffff:a.b.c.d), will be treated as
IPv6 addresses. The mask can be left off, in which case addresses are
treated as host addresses (/32 or /128, depending on address family).
Also, cidr_from_str() will parse DNS PTR-record-style address formats.
That is, representations like "4.3.2.1.in-addr.arpa" for IPv4, and an
extremely long and annoying form ending in .ip6.arpa for IPv6.
cidr_from_str() also understands the deprecated RFC1886 form of IPv6
PTR records, which ends in .ip6.int, though cidr_to_str() will only generate
the current RFC3152-style .ip6.arpa version. Note also that while
cidr_to_str() treats all addresses as host addresses when building the PTR

string (ignoring the netmask), cidr_from_str() will fill in the netmask bits
as appropriate for the string given; any octets (or half-octets, in the IPv6
form) that are left off the beginning will have their netmask bits set to 0.
It’s not the intention of the author that this function necessarily be able to
decipher any possible address format. However, the capabilities given
should parse any rational address specification, and many irrational ones
(like hex/oct and collapsed v4 addresses). The intention is rather to support
the ways the addresses and netmasks are commonly written and read, so
that a human-readable form can quickly be transformed into a format that
libcidr can then use in its various ways, whether through comparing
addresses with functions like cidr_contains(), or generating references and
stats about a netblock with functions like cidr_addr_broadcast() and
cidr_numhost(), or simply spitting it out in different human-readable forms
with cidr_to_str().

Arguments:
- const char * addr: A string containing some human-readable IP block.

Return value:
CIDR *

Returns a pointer to a populated CIDR describing (hopefully) the block
you talked about in the string. Use cidr_free() to free the structure when
you’re finished with it. Returns NULL on error.

Error codes:
- [EFAULT]

Passed NULL
- [EINVAL]

Can’t parse the input string
- [ENOENT]

Internal error (shouldn’t happen)
Note:

cidr_from_str() can also fail and set errno for any of the reasons
listed for cidr_alloc() or cidr_get_pflen().

- cidr_get_addr(): Return address bits

Summary:
Return the address bits which compose the address. This should be used in
preference to simply referencing inside the CIDR manually in external
code, since the structure might change on you.
Generally, if you think you need to call this, you should probably rethink
what you’re doing. Most of the time, one of the formatted outputs from
cidr_to_str() or one of the manipulation functions like
cidr_addr_hostmin() is what you want. Still, there are times when you’re
interesting in manipulating the address by yourself as a bunch of binary bits

(the cidrcalc example program does this), so this function should be used
instead of groping around in the structure manually.

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
uint8_t *

Returns a pointer to an 16-element array of uint8_t’s representing the
address. This array must be free()’d when you’re through with it. Returns
NULL on error.

Error codes:
- [EFAULT]

Passed NULL
- [ENOMEM]

malloc() failed

- cidr_get_mask(): Return netmask bits

Summary:
Return the netmask bits which of the given netblock. This should be used in
preference to simply referencing inside the CIDR manually in external
code, since the structure might change on you.
See further notes about the desirability of using this function above in the
notes for cidr_get_addr().

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
uint8_t *

Returns a pointer to an 16-element array of uint8_t’s representing the
netmask. This array must be free()’d when you’re through with it. Returns
NULL on error.

Error codes:
- [EFAULT]

Passed NULL
- [ENOMEM]

malloc() failed

- cidr_get_pflen(): Network bits in the netmask

Summary:
Poke around the netmask of the passed-in CIDR structure and determine
how many bits there are in the netmask, as appropriate to the address family.

Arguments:
- const CIDR * block: An arbitrary netblock.

Return value:
int

Returns the number of network bits in the netmask (0-32 for IPv4, 0-128
for IPv6). Returns -1 on error.

Error codes:
- [EFAULT]

Passed NULL
- [EINVAL]

Invalid (non-contiguous) netmask
- [ENOENT]

Internal error (shouldn’t happen)

- cidr_get_proto(): Find a netblock’s protocol family

Summary:
Returns the protocol family of an address using one of the defined
constants. The current choices are CIDR_IPV4 and CIDR_IPV6.

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
int

Returns the address family of the given netblock.

Error codes:
- [EFAULT]

Passed NULL

- cidr_is_v4mapped(): Is address IPv4-mapped IPv6 address?

Summary:
An IPv6 address may be in the network range reserved for IPv4-mapped
addresses. This function will tell you whether it is or not. Note that an IPv4
CIDR is NOT considered an IPv4-mapped address, and so will return
failure.

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
int

Returns 0 if the address is an IPv4-mapped IPv6 address. Returns -1
otherwise.

- cidr_net_subnets(): Divide a netblock

Summary:
Take in a netblock, and derive the two netblocks which it divides up into.
Return them in an array.

Arguments:
- const CIDR * addr: The netblock to subdivide.

Return value:
CIDR **

Returns a 2-element array of CIDR structs, containing the two subnets of
addr. Each of the elements should be cleaned up with cidr_free(), and the
array itself then cleaned up with free(). Returns NULL on failure.

Error codes:
- [0]

No error (already a /32 or /128)
- [EFAULT]

Passed NULL argument
- [ENOMEM]

malloc() failed
Note:

cidr_net_subnets() can also fail and set errno for any of the
reasons listed for cidr_addr_network() or cidr_dup().

- cidr_net_supernet(): Undivide a netblock

Summary:
Take in a netblock, and derive the parent netblock in which it fits.

Arguments:
- const CIDR * addr: The netblock to find the parent of.

Return value:
CIDR *

Returns a CIDR struct defining the parent network of addr. Clean this up
with cidr_free() when you’re finished with it. Returns NULL on failure.

Error codes:
- [0]

No error (already a /0)
- [EFAULT]

Passed NULL argument
Note:

cidr_net_supernet() can also fail and set errno for any of the
reasons listed for cidr_dup().

- cidr_numaddr(): Addresses in a netblock

Summary:
Determine the total number of addresses in a netblock (including the
network and broadcast addresses).
This function returns a pointer to a pre-formatted string because we’re
potentially returning a value up to 2**128. I don’t feel like trying to
portably do 128-bit arithmetic. Do you?

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
const char *

Returns a pointer to a string containing the number of addresses in the
netblock. Note that this is a static string; it should not be overwritten, and
doesn’t need to be free()’d. Make a copy if you want to manipulate it.
Returns NULL on error.

Error codes:
- [EFAULT]

Passed NULL
Note:

cidr_numaddr() can also also fail and set errno for any of the
reasons listed for cidr_numaddr_pflen().

- cidr_numaddr_pflen(): Addresses in a prefix length

Summary:
Determine the total number of addresses in a netblock with the given prefix
length (including the network and broadcast addresses).
Note that this takes an IPv6 prefix length; that is, 0-128. If you’re interested
in an IPv4 address with a given prefix length, add 96 to it when you call this
function.
See the note in cidr_numaddr() for why we’re returning a string and not a
number.

Arguments:
- int pflen: A prefix length (0-128).

Return value:
const char *

Returns a pointer to a string containing the number of addresses in the
netblock. Note that this is a static string; it should not be overwritten, and
doesn’t need to be free()’d. Make a copy if you want to manipulate it.
Returns NULL on error.

Error codes:
- [EINVAL]

Invalid prefix length

- cidr_numhost(): Host addresses in a netblock

Summary:
Determine the total number of host addresses in a netblock (excluding the
network and broadcast addresses).
See the note in cidr_numaddr() for why we’re returning a string and not a
number.

Arguments:
- const CIDR * addr: An arbitrary netblock.

Return value:
const char *

Returns a pointer to a string containing the number of host addresses in
the netblock. Note that this is a static string; it should not be overwritten,
and doesn’t need to be free()’d. Make a copy if you want to manipulate it.
Returns NULL on error.

Error codes:
- [EFAULT]

Passed NULL
Note:

cidr_numhost() can also also fail and set errno for any of the
reasons listed for cidr_numhost_pflen().

- cidr_numhost_pflen(): Host addresses in a prefix length

Summary:
Determine the total number of host addresses in a netblock with the given
prefix length (excluding the network and broadcast addresses).
Note that this takes an IPv6 prefix length; that is, 0-128. If you’re interested
in an IPv4 address with a given prefix length, add 96 to it when you call this
function.
See the note in cidr_numaddr() for why we’re returning a string and not a
number.

Arguments:
- int pflen: A prefix length (0-128).

Return value:
const char *

Returns a pointer to a string containing the number of host addresses in
the netblock. Note that this is a static string; it should not be overwritten,
and doesn’t need to be free()’d. Make a copy if you want to manipulate it.
Returns NULL on error.

Error codes:
- [EINVAL]

Invalid prefix length

- cidr_to_inaddr(): Create a struct in_addr

Summary:
Takes in a CIDR and creates a struct in_addr from it. This struct can then be
used in connect() or similar network-related functions. If the users passes in
a struct in_addr, it will be filled in. Otherwise, one will be allocated and
returned.

Arguments:
- const CIDR * addr: A CIDR structure describing the host to be translated
into a struct in_addr. Note that the netmask is irrelevant and will be ignored.
cidr_to_inaddr() supports only IPv4 addresses, as the underlying structure
only does.
- struct in_addr * uptr: A pointer to a pre-allocated struct in_addr, or
NULL. If non-NULL, the pointed-at structure will be filled in. If NULL, a
new structure will be allocated, filled in, and returned.

Return value:
struct in_addr *

Returns a pointer to the filled-in struct in_addr. If the user passed one in,
this will just point to the same place and can profitably be ignored. If the
user passed in NULL, this will point to the struct in_addr we allocated,
which should be free()’d by the user when they’re finished with it. Returns
NULL on error.

Error codes:
- [EFAULT]

Passed NULL
- [ENOMEM]

malloc() failed
- [EPROTOTYPE]

Bad protocol type (must be IPv4)

- cidr_to_in6addr(): Create a struct in6_addr

Summary:
Takes in a CIDR and creates a struct in6_addr from it. This struct can then
be used in connect() or similar network-related functions. If the users
passes in a struct in6_addr, it will be filled in. Otherwise, one will be
allocated and returned.

Arguments:
- const CIDR * addr: A CIDR structure describing the host to be translated
into a struct in6_addr. Note that the netmask is irrelevant and will be
ignored. cidr_to_in6addr() supports both IPv4 and IPv6 addresses, as the
underlying structure does as well. IPv4 addresses are treated as v4-mapped
IPv6 addresses.

- struct in6_addr * uptr: A pointer to a pre-allocated struct in6_addr, or
NULL. If non-NULL, the pointed-at structure will be filled in. If NULL, a
new structure will be allocated, filled in, and returned.

Return value:
struct in6_addr *

Returns a pointer to the filled-in struct in6_addr. If the user passed one in,
this will just point to the same place and can profitably be ignored. If the
user passed in NULL, this will point to the struct in6_addr we allocated,
which should be free()’d by the user when they’re finished with it. Returns
NULL on error.

Error codes:
- [EFAULT]

Passed NULL
- [ENOMEM]

malloc() failed
- [EPROTOTYPE]

Bad protocol type (must be IPv4 or IPv6)

- cidr_to_str(): Create a human-readable netblock description

Summary:
Takes in a CIDR structure, and generates up a human-readable string
describing the netblock. This function has a lot of flexibility, depending on
the flags passed to it. The default output is "address/pflen" form, with the
address in a reasonably compact form, and the prefix length given
numerically. Flags alter the output in various ways, and are set as bitmasks,
so they can be combined however you wish. They can be used in any
combination that makes sense, and a large number of combinations that
don’t.
The current flags are:
CIDR_NOFLAGS: A stand-in for when you just want the default output
CIDR_NOCOMPACT: Don’t do ::-style IPv6 compaction
CIDR_VERBOSE: Show leading 0’s in octets [v6 only]
CIDR_USEV6: Use IPv4-mapped address form for IPv4 addresses
(::ffff:a.b.c.d)
CIDR_USEV4COMPAT: Use IPv4-compat form (::a.b.c.d) instead of
IPv4-mapped form (only meaningful in combination with CIDR_USEV6)
CIDR_NETMASK: Return a netmask in standard form after the slash,
instead of the prefix length. Note that the form of the netmask can thus be
altered by the various flags that alter how the address is displayed.
CIDR_ONLYADDR: Show only the address, without the prefix/netmask
CIDR_ONLYPFLEN: Show only the prefix length (or netmask, when
combined with CIDR_NETMASK), without the address.
CIDR_WILDCARD: Show a Cisco-style wildcard mask instead of the
netmask (only meaningful in combination with CIDR_NETMASK)
CIDR_FORCEV6: Forces treating the CIDR as an IPv6 address, no matter
what it really is. This doesn’t do any conversion or translation; just treats the
raw data as if it were IPv6.

CIDR_FORCEV4: Forces treating the CIDR as an IPv4 address, no matter
what it really is. This doesn’t do any conversion or translation; just treats the
raw data as if it were IPv4.
CIDR_REVERSE: Generates a .in-addr.arpa or .ip6.arpa-style PTR record
name for the given block. Note that this always treats it solely as an address;
the netmask is ignored. See some notes in cidr_from_str() for details of the
asymmetric treatment of this form of address representation relating to the
netmask.
Many combinations can give somewhat surprising results, but they should
allow any of a host of manipulations to output just the data you might be
interested in. The "mkstr" test program in the source tree is extremely useful
for manual testing of the various flags to see visually what they do, and is a
lot quicker than trying to code them all to test it out. Use it to your
advantage.

Arguments:
- const CIDR * block: The CIDR structure to generate a string form of.
The address family will be autodetected.
- int flags: A bitmask of the various possible flags the function accepts.

Return value:
char *

Returns a pointer to a string containing the representation of the network.
Be sure to free() it when you’re finished.

Error codes:
- [EINVAL]

Invalid argument (bad block or flags)
- [ENOENT]

Internal error (shouldn’t happen)
- [ENOMEM]

malloc() failed
Note:

cidr_to_str() can also fail and set errno for any of the reasons
listed for cidr_alloc() or cidr_get_pflen().

- cidr_version(): Library version

Summary:
Returns a static string describing the library release version.

Arguments:
None.

Return value:
const char *

Returns a pointer to a static string describing the library version number. It
shouldn’t be overwritten or free()’d.

